FULL PAPER

Acid-Induced Rearrangement of Cycloadducts from Cyclopropenecarboxylates and 1,3-Diarylisobenzofurans

by Mariia M. Efremova, Alexander P. Molchanov, Anna G. Larina, Galina L. Starova, Rafael R. Kostikov, and Alexander V. Stepakov*

Chemistry Department, Saint-Petersburg State University, Universitetsky prosp. 26, RU-St-Petersburg 198504 (phone: +7-812-428-4021; fax: +7-812-428-6939; e-mail: alstepakov@yandex.ru)

Treatment of several *Diels–Alder* adducts of cyclopropenecarboxylates and 1,3-diarylisobenzofurans with a strong acid triggers a skeletal rearrangement resulting in 4,8b-dihydro-3a*H*-indeno[1,2-*b*]furans.

Keywords: Cyclopropenecarboxylates, 1,3-Diarylisobenzofurans, Rearrangements, Indeno[1,2-b]furans, *Diels-Alder* adduct.

Introduction

Natural and synthetic products containing an indeno[1,2b furan framework display a variety of pharmacological effects including antibacterial [1][2] and enzymatic [1] activities. Indenofuran derivatives are also used as a stimulant for the germination of seeds of parasitic weeds belonging to the genera Striga and Orobanche [3 – 6]. There has been interest in the synthesis of indeno[1,2-b]furan ring systems and several multistage approaches have been reported [4][7][8]. Several approaches to the synthesis of the indeno[1,2-b] furan ring system have been developed, including methods such as reaction of ninhydrin with diketones [1][2][9][10], titanocene-catalyzed cyclocarbonylation of o-allyl aryl ketones [11], electrochemical reduction of 2,2-dibromo-1,3-diketones in the presence of indene [12], oxidative addition of 1,3-dicarbonyl compounds to indene [13][14]. Bhuyan and co-workers have reported a novel synthetic method for the preparation of dihydroindeno[1,2-b]furans via one-pot three-component reaction of 1,3-indanedione, aromatic aldehyde, and a pyridinium ylide in the presence of Et₃N under MW irradiation [15]. In 2014, Yang reported the first example of one-pot three-component condensation reactions of 1,3indandione, aromatic aldehyde, and cyclohexyl isocyanide with the formation of indeno[1,2-b] furan derivatives in good yields [16].

Results and Discussion

DOI: 10.1002/hlca.201500114

It was discovered that the *Diels-Alder* adducts of 1,3-diary-lisobenzofurans and cyclopropenecarboxylates on treatment with a strong acid undergo a cascade of cationic rearrangements leading to compounds with an indeno

[1,2-b]furan skeleton. In this article, we present the synthesis, structural elucidation, and a mechanistic proposal for this rearrangement. Previously, acid-induced rearrangements of 1,3-diphenylisobenzofuran adducts with azirines [17 – 19], maleimides [20 – 23], (E)-6,6-dimethoxy-3-hexen-2-one [24], dimethyl maleate [23], cyclooctene [23], cyclopropenes [25 – 27], and N-aryl itaconimides [28] have been studied. Cava and Narasimhan reported that the [4+2] adduct from 1,3-diphenylisobenzofuran and 1,2,3-triphenylcyclopropene by treatment with hydrochloric acid underwent the fragmentation affording the 1,2,3,4-tetraphenylnaphthalene and benzaldehyde [26]. Similar results were obtained by treatment of the Diels-Alder adduct from 1,3-diphenylisobenzofuran and 1,2,3-triphenylcyclopropene with MeSO₃H in CH₂Cl₂ at ambient temperature ($our\ data$).

For this study, we prepared several Diels-Alder adducts 3 from 1,3-diarylisobenzofurans 2a, 2b and cyclopropenecarboxylates 1a, 1b. The reactions of compounds 2a with 1a, 1b and 2b with 1b in benzene at 60° resulted in the exo-adducts $3\mathbf{a} - 3\mathbf{c}$ (Table). It should be noted that according to the ¹H-NMR data, the reaction mixtures contained only the starting compounds and exo-adducts 3a - 3c. The *endo*-isomer could not be detected. The reaction products were isolated by column chromatography (CC) over silica using a mixture of hexane/AcOEt as the eluent. The structures of adducts 3a - 3c were characterized from their ¹H- and ¹³C-NMR, MS, and IR spectra. The ¹H-NMR spectra of adducts **3a**, **3b**, and **3c** exhibit signals at $\delta(H)$ 3.60, 3.83, and 3.77, respectively, belonging to the cyclopropyl H-atoms. The values of the chemical shifts for cyclopropyl H-atoms indicate their syn-position with respect to the O-atom [29 - 31].

The rearrangement of compounds 3 was found in the presence of acids. Of the acids (MeSO₃H, H₂SO₄, HCl,

Table. Synthesis of *Diels-Alder* adducts 3a - 3c

BF₃·OEt₂) and solvents (CH₂Cl₂, benzene, toluene, THF, Et₂O) screened, the combination of MeSO₃H and CH₂Cl₂ produced the best results for these reactions [20].

In our initial studies, the reaction of 3a with MeSO₃H was investigated (Scheme 1). Compound 3a was reacted with MeSO₃H (6 equiv.) in CH₂Cl₂ at ambient temperature. After stirring for 6 h and extractive workup, the thin-layer chromatography (TLC) analysis indicated the formation of several compounds. Only methyl (3aSR,4RS,8bRS)-4,8b-dihydro-2-methyl-3a,4,8b-triphenyl-3aH-indeno[1,2-b]furan-3-carboxylate (4a) and methyl 3-oxo-2-(1,1,3-triphenyl-1*H*-inden-2-yl)butanoate (5) were isolated from the reaction mixture by a CC in 35% and 15% yields, respectively; no other products were isolated in pure form (Scheme 1). After reducing the reaction time to 3 h, we could isolate product 4a in 51% yield. It should be noted that using one or two equivalents of MeSO₃H in the reaction mixture after stirring for 6 h was observed the presence of starting *Diels-Alder* adduct **3a**. According to TLC data, using 1 - 3 equivalents of the MeSO₃H leads to more complex reaction mixtures. The compositions and structures of the products 4a and 5 were established by elemental and spectroscopic analyses. The ¹H-NMR spectrum of indeno[1,2-b]furan 4a exhibits a signal for the CH H-atoms at the C(4) atom at δ (H) 5.7, and a signal for the Me group at the C(2) atom at δ (H) 2.4. The fused tricyclic structure and relative configuration of product 4a were confirmed by a single-crystal X-ray diffraction (Fig. 1). The ¹H-NMR spectrum of indene 5 shows singlet signals at $\delta(H)$ 4.1 and 2.2 belonging to the Hatom in α -position of the ester group and the MeCO group, respectively. The 13 C-NMR spectrum of compound **5** exhibits a signal for the CO group at $\delta(C)$ 208, signals for the Me groups at $\delta(C)$ 52 (CO₂Me), and 31 (MeCO), a signal for the CH C-atom at $\delta(C)$ 55 and a signal for C(1) at $\delta(C)$ 65. We proposed that indene **5** was formed from indenofuran **4a** under acidic conditions, and when **4a** was treated with MeSO₃H in CH₂Cl₂ the formation of indene **5** was observed.

For the next step in our study, we treated *Diels-Alder* adduct **3b** with MeSO₃H (*Scheme 2*). The reaction proceeded at room temperature producing indeno[1,2-b]furan

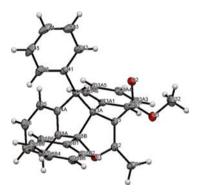


Fig. 1. Molecular structure (ORTEP 50% probability level) of **4a**. Selected interatomic distances [Å] and Angles [°]: O(1)–C(2) 1.3578 (13), O(1)–C(8b) 1.4720(12), C(2)–C(3) 1.3470(15), C(3)–C(3a) 1.5265 (14), C(3a)–C(4) 1.5924(14), C(3a)–C(8b) 1.5990(14), C(4)–C(4a) 1.5094(14), C(4a)–C(8a) 1.3835(15), C(8a)–C(8b) 1.5059(14), C(2)–O (1)–C(8b) 108.35(8), C(3)–C(2)–O(1) 113.25(9), C(3)–C(3a)–C(4) 108.75(8), C(3)–C(3a)–C(8b) 98.64(8).

Scheme 1. Reaction of Diels-Alder adduct 3a with MeSO₃H.

^a) Yield of isolated product.

4b in 37% yield. Although the TLC analysis indicated the formation of several compounds, isolation of other products from the reaction mixture in a pure form was not possible. The treatment of the unsymmetrically substituted adduct 3c with MeSO₃H at 20° for 3 h afforded a complex mixture of products (Scheme 3). A CC of this mixture made it possible to isolate indeno[1,2-b]furan 4c in 25% yield and indenes 6a, 6b in 30% overall yield as inseparable mixtures of isomers. By increasing the reaction time to 3 d, isomeric indenes 6a, 6b were isolated in 47% overall yield, indenofuran 4c (7%) and a mixture of unidentified products. The reaction of indeno[1,2-b]furan 4c with MeSO₃H in CH₂Cl₂ for 2 d led to indene 6a in 34% yield (Scheme 4). The structure of 4c was established unequivocally by X-ray diffraction analysis (Fig. 2). Single crystals of 4c were obtained by crystallization from CH₂Cl₂/MeOH.

Based on the above results, a plausible mechanism for the formation of compounds $4\mathbf{a}-4\mathbf{c}$ is proposed in *Scheme 5*. The acid-catalyzed isomerization of 3 starts from cation 7, which undergoes rearrangement through a cascade of cations 8-10. The breaking up of an oxygen bridge in cation 7 gives cyclopropyl carbinyl cation 8. Subsequent rearrangement leads to homoallylic cation 9. Finally, a $v \left[\pi^2 + \sigma^2 + \sigma^2 \right]$ -rearrangement occurs in the

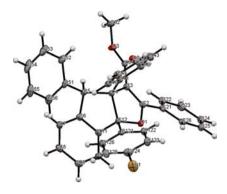


Fig. 2. Molecular structure (ORTEP 50% probability level) of **4c**. Selected interatomic distances [Å] and angles [°]: O(1)–C(2) 1.3682 (18), O(1)–C(12) 1.4597(17), C(3)–C(2) 1.351(2), C(3)–C(4) 1.531 (2), C(4)–C(5) 1.595(2), C(6)–C(5) 1.509(2), C(11)–C(6) 1.382(2), C(4)–C(12) 1.592(2), C(2)–O(1)–C(12) 107.97(11), O(1)–C(12)–C(4) 104.67(11), C(2)–C(3)–C(4) 110.57(13), C(3)–C(4)–C(5) 107.79(12), C(3)-C(4)-C(12) 98.35(11).

cation 9 to form cation 10, which *via* deprotonation gives products 4a - 4c.

The probable mechanism of formation of indenes 5 and 6 is shown in *Scheme 6*. On the first stage, indenofuran 4 reacts with MeSO₃H giving the protonated form 11,

Scheme 2. Reaction of *Diels-Alder* adduct **3b** with MeSO₃H.

Scheme 3. Reaction of Diels-Alder adduct 3c with MeSO₃H.

Scheme 4. Reaction of indenofuran adduct 4c with MeSO₂H.

Scheme 5. Proposed reaction mechanism for the formation of products
$$4a - 4c$$
.

Scheme 6. Proposed reaction mechanism for the formation of indenes **5** and **6**.

Scheme 7. Reaction of *Diels-Alder* adduct **14** with MeSO₂H.

which is converted into cation 12 through the opening of the furan ring. The latter undergoes a 1,2-phenyl shift with formation of intermediate 13, which is further transformed into products 5 and 6.

The choice of spiro-adduct **14** as starting material in this reaction appeared particularly interesting in order to expand the synthetic utility of this methodology (*Scheme 7*). An adduct **14** was prepared by heating of a mixture of methyl (*E*)-2-(2-phenylcyclopropylidene)acetate and isobenzofuran **2a** in toluene (3 h, 110°). Synthesis, and spectroscopic, analytical, and X-ray characterization data for *Diels–Alder* adduct **14** were previously reported

by our group [32]. Compound **14** was reacted with MeSO₃H (6 equiv.) in CH₂Cl₂ at ambient temperature. After stirring for 6 h and extractive workup, the TLC analysis indicated the formation of only one compound. The methyl 5,8-diphenyl-7,8-dihydrobenzo[c]phenanthrene-6-carboxylate (**15**) was isolated from the reaction mixture by the preparative TLC in 98% yield. The structure of the benzo[c]phenanthrene **15** was characterized by ¹H- and ¹³C-NMR, MS, and IR spectra. The structure of compound **15** was confirmed additionally by the X-ray diffraction analysis (*Fig. 3*).

A plausible mechanism for the formation of compound **15** is proposed in *Scheme 8*. The *Diels–Alder* adduct **14**, under acidic conditions, undergoes subsequent conversion into cations **16** and **17**. The latter is converted to the benzyl cation **18** as result a cyclopropane ring opening. Finally, an intramolecular *Friedel–Crafts* reaction occurs in the intermediate **18** to form product **15**.

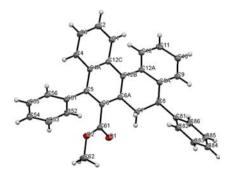


Fig. 3. Molecular structure (ORTEP 50% probability level) of **15**. Selected interatomic distances [Å] and angles [°]: C(6a)-C(7) 1.5142 (17), C(6a)-C(12b) 1.3935(17), C(7)-C(8) 1.5393(17), C(8)-C(8a) 1.5236(17), C(8a)-C(12a) 1.4208(17), C(12a)-C(12b) 1.4910(17), C(12b)-C(6a)-C(7) 118.73(10), C(8a)-C(8)-C(7) 107.28(10), C(6a)-C(12b)-C(12a) 117.34(11), C(12)-C(12a)-C(12b) 123.15(11), C(6a)-C(6a)-C(7) 120.97(11).

Scheme 8. Proposed reaction mechanism for the formation of product 15.

Conclusion

We have shown that treatment of the Diels-Alder adducts of cyclopropenecarboxylates and 1,3-diarylisobenzofurans with a strong acid triggers a skeletal rearrangement resulting in 4,8b-dihydro-3aH-indeno[1,2-b]furans. Under similar conditions, the Diels-Alder adduct of methyl (E)-2-(2-phenylcyclopropylidene)acetate and 1,3-diphenylisobenzofuran is converted to benzo[c]phenanthrene derivative.

We gratefully acknowledge the financial support from *Russian Foundation for Basic Research* (Project No 15-03-05319). This research made use of resources from the X-ray Diffraction Centre, Centre for Magnetic Resonance, Educational Resource Center of Chemistry and the Centre for Chemical Analysis and Materials of Saint-Petersburg State University.

Experimental Part

General

Hexane and AcOEt for the chromatography were distilled before use. Cyclopropenes and 1,3-diarylisobenzo-furans were prepared following known procedures [33 – 36]. Reactions were monitored by the TLC analysis using Silufol UV-254 plates. The CC was performed on silica gel (SiO₂; 70 – 230 mesh; Merck), eluted with AcOEt/hexane. M.p.: Boetius instrument; uncorrected. IR Spectra: Bruker Tensor 27 spectrophotometer. 1 H- and 13 C-NMR spectra: in CDCl₃ using a Bruker Avance 400 or a Bruker DPX-300 spectrometer. HR-ESI-MS: Bruker-microTOF and Bruker-maXis (QTOF) instrument. The X-ray diffraction data were performed by a Bruker APEX-II CCD diffractometer with MoK_{α} X-ray radiation.

General Procedure for the Synthesis of Diels-Alder Adducts **3b** and **3c**

A soln. containing 1 mmol of cyclopropenecarboxylate **1b** and 1.2 mmol 1,3-diarylisobenzofuran **2a**, **2b** in 5 ml of dry benzene was heated at 60° for 3 h. The mixture was concentrated under reduced pressure and the residue was subjected to SiO_2 chromatography using a hexane/AcOEt mixture as eluent.

The reaction of *Diels–Alder* adducts $3\mathbf{a} - 3\mathbf{c}$ and 14 with MeSO₃H (*General Procedure*). MeSO₃H (6 equiv.) was added at r.t. to a soln. of 3 (1 equiv.) in CH₂Cl₂ (5 ml). After 3 h (TLC-control), 5 ml of Na₂CO₃ (aq.) were added carefully to the mixture. The aq. layer was extracted with CH₂Cl₂ (3 × 5 ml), the org. layers were combined, dried (MgSO₄), and evaporated to dryness. The residue was then purified by a CC using a mixture of hexane/AcOEt as eluent.

Methyl (1RS,1aRS,2SR,7RS,7aRS)-1a,2,7,7a-Tetrahydro-1a-methyl-2,7,7a-triphenyl-1*H*-2,7-epoxycyclopropa[*b*]naphthalene-1-carboxylate (3a). A soln. containing 3.0 mmol of cyclopropenecarboxylate 1a and 3.0 mmol 1,3-diphenylisobenzofuran (2a) in 50 ml of dry benzene was heated at reflux for 1 h. The mixture was concentrated under reduced pressure and the residue was subjected to SiO2 chromatography (using hexane/ AcOEt mixture as the eluent) to give the product 3a. Yield: 1.17 g (83%). Colorless crystals. M.p. 120 – 122 °C. IR (CHCl₃): 1050, 1085, 1150, 1175, 1280, 1320, 1345, 1400, 1450, 1490, 1710, 2860, 3020. ¹H-NMR (400 MHz, CDCl₃): 1.38 (s, Me); 3.60 (br. s, COOMe + $CH_{\text{cycloprop.}}$); 6.28 (d, J = 8, 2 $H_{\text{arom.}}$); 7.16 - 7.40 (m, 11 $H_{arom.}$); 7.50 - 7.60 (m, 4 $H_{arom.}$); 7.85 (d, J = 8, 2 H_{arom.}). ¹³C-NMR (100 MHz, CDCl₃): 10.0 (Me); 32.1 (CH); 41.4 51.0 ($C_{cycloprop.}$); $(C_{cycloprop.});$ (COOMe); 90.5 (C-O); 90.7 (C-O); 122.1; 122.2; 126.0; 126.5; 126.8 (2 C); 127.4 (2 C); 127.5; 127.86; 127.94 (2 C); 128.4; 128.8 (2 C); 128.9 (2 C); 129.0; 132.0 (2 C); 134.3; 134.8; 147.5; 147.9; 169.9 (CO). HR-ESI-MS: $481.1774 (C_{32}H_{26}NaO_3^+, [M + Na]^+; calc. 481.1780).$

Methyl (1aRS,2RS,7SR,7aSR)-1a,2,7,7a-Tetrahydro-1a,2,7,7a-tetraphenyl-1*H*-2,7-epoxycyclopropa[*b*]naphthalene-1-carboxylate (3b). Yield: 469 mg (80%). Colorless crystals. M.p. 265 – 267 °C. IR (CHCl₃): 1175, 1195, 1303, 1330, 1447, 1496, 1737, 2950, 3053. ¹H-NMR (400 MHz, CDCl₃): 3.33 (*s*, COOMe); 3.83 (*s*, CH_{cycloprop}); 6.67 (*d*, *J* = 8, 4 H_{arom}); 7.13-7.40 (*m*, 20 H_{arom}). ¹³C-NMR (100 MHz, CDCl₃): 32.7 (CH_{cycloprop}); 51.1 (COOMe); 54.8 (2 C_{cycloprop}); 90.2 (2**C*-O); 122.5 (2 C); 126.3 (2 C); 126.7 (4 C); 127.2 (4 C); 127.3 (2 C); 127.89 (4 C); 127.92 (2 C); 131.9 (2 C); 132.2 (4 C); 134.6 (2 C); 147.5 (2 C); 169.3 (CO). HR-ESI-MS: 543.1931 (C₃₇H₂₈NaO₃⁺, [*M* + Na]⁺; calc. 543.1936).

Methyl (1SR,1aSR,2SR,7RS,7aRS)-2-(4-Bromophenyl)-1a,2,7,7a-tetrahydro-1a,7,7a-triphenyl-1*H*-2,7-epoxycy-clopropa[*b*]naphthalene-1-carboxylate (3c). Yield: 310 mg (52%). Colorless crystals. M.p. 209 – 211 °C. IR (CHCl₃):

1009, 1168, 1331, 1397, 1445, 1493, 1602, 1745, 2948, 3053.

¹H-NMR (400 MHz, CDCl₃): 3.34 (s, COOMe); 3.80 (s, C $H_{\text{cycloprop.}}$); 6.65 (d, J = 7, 4 H_{arom.}); 7.16-7.40 (m, 17 H_{arom.}); 7.50 (d, J = 8, 2 H_{arom.}).

¹³C-NMR (100 MHz, CDCl₃): 32.5 (C $H_{\text{cycloprop.}}$); 51.2 (COOMe); 54.8 (2 C_{cycloprop.}); 90.0 (C-O); 90.6 (C-O); 122.1; 122.3; 122.6; 126.3; 126.4; 126.6 (2 C); 127.2 (2 C); 127.3 (2 C); 127.4; 127.5; 127.9 (2 C); 128.0; 128.3 (2 C); 131.1 (2 C); 131.6; 131.7; 132.1 (4 C); 133.5; 134.3; 147.1; 147.4; 169.1 (CO). HR-ESI-MS: 621.1036 (C₃₇H₂₇⁷⁹BrNaO₃⁺, [M + Na]⁺; calc. 621.1041), 623.1015 (C₃₇H₂₇⁸¹BrNaO₃⁺, [M + Na]⁺; calc. 623.1015).

Methyl (3aSR,4RS,8bRS)-4,8b-Dihydro-2-methyl-3a,4,8btriphenyl-3aH-indeno[1,2-b]furan-3-carboxylate (4a) and 3-Oxo-2-(1,1,3-triphenyl-1*H*-inden-2-yl)butanoate (5). Following the General Procedure, Diels-Alder adduct 3a (0.76 mmol) and MeSO₃H (4.5 mmol) were reacted in CH₂Cl₂. CC gave **4a** (121 mg, 35%) and **5** (51 mg, 15%). Data of 4a: Colorless crystals. M.p. 198 - 200 °C. IR (CHCl₃): 1096, 1131, 1193, 1243, 1375, 1446, 1496, 1634, 1683, 3053. ¹H-NMR (300 MHz, CDCl₃): 2.41 (s, Me); 3.88 (s, COOMe); 5.67 (s, CH); 6.05 (d, J = 6, 2 H_{arom.}); 6.56 - 6.80 (m, 5 H_{arom.}); 6.90 - 7.15 (m, 8 H_{arom.}); 7.38 -7.55 (m, 4 H_{arom.}). ¹³C-NMR (100 MHz, CDCl₃): 16.1 (Me); 51.3 (COOMe); 60.0 (CH); 71.2; 106.3; 110.3; 125.3; 125.8 (2 C); 126.8; 127.0 (3 C); 127.2 (2 C); 127.6; 127.9 (2 C); 128.5 (3 C); 130.1; 130.5; 130.6 (2 C); 138.7; 140.5; 143.1; 144.0; 146.1; 167.5 (=C-O); 168.7 (CO). HR-ESI-MS: 481.1774 (C₃₂H₂₆NaO₃⁺, [M + Na]⁺; calc. 481.1780). Crystallographic Data for 4a. C₃₂H₂₆O₃, M_r 458.53, monoclinic, $P2_1/c$ (no. 14), a = 9.76434(9), b = 9.59139(11), $c = 25.5371(3) \text{ Å}, \beta = 95.6193(9)^{\circ}, V = 2380.15(4) \text{ Å}^3,$ Z = 4, $D_x = 1.280$ g cm⁻³, F(000) = 968, radiation, CuK_α $(\lambda = 1.54184 \text{ Å}), 3.48 \le 2\theta \le 76.60, \text{ intensity data were}$ collected at 293(2) K with a Bruker APEX-II CCD diffractometer, and by employing a $w/2\theta$ scanning technique, in the range of $-12 \le h \le 1$, $-12 \le k \le 12$, $-32 \le l \le 29$; the structure was solved by a direct method; all non-H-atoms were positioned, and anisotropic thermal parameters were refined from 5001 observed reflections with R(into) = 0.0140 by a full-matrix least-squares technique converged to R = 0.0371 and $R_w = 0.0925$ $[I > 2\sigma]$ (I)]. CCDC No.: 1057280.

Data of **5**: White crystals. M.p. 182 – 184 °C. IR (CHCl₃): 1032, 1043, 1070, 1090, 1118, 1154, 1193, 1230, 1246, 1346, 1432, 1445, 1479, 1491, 1596, 1726, 3056. 1 H-NMR (400 MHz, CDCl₃): 2.24 (s, Me); 3.75 (s, COOMe); 4.07 (s, CH); 6.59 – 7.40 (m, 19 H_{arom.}). 13 C-NMR (100 MHz, CDCl₃): 31.0 (Me); 52.0 (COOMe); 54.6 (CH); 64.5; 125.8; 126.5; 126.8; 127.5 (2 C); 127.6 (2 C); 127.8 (2 C); 127.9 (3 C); 128.0 (2 C); 128.4 (2 C); 128.6 (2 C); 130.4; 133.3; 135.1; 137.9; 138.7; 139.0; 140.7; 141.3; 172.2 (CO); 208.2 (CO). HR-ESI-MS: 481.1774 (C_{32} H₂₆NaO $_{3}^{+}$, [M + Na] $_{7}^{+}$; calc. 481.1780). **Methyl (3aS,4R,8bR)-4,8b-Dihydro-2,3a,4,8b-tetraphenyl-3aH-indeno[1,2-b]furan-3-carboxylate (4b). 29 mg (37%) was obtained using** *General Procedure* **from** *Diels-Alder*

adduct 3b (77 mg). White crystals. M.p. 225 - 227 °C. IR

(CHCl₃): 1075, 1180, 1330, 1420, 1470, 1620, 1720, 3055. 1 H-NMR (400 MHz, CDCl₃): 3.75 (s, COOMe); 5.67 (s, CH); 6.19 (d, J = 8, 2 H_{arom.}); 6.64 (t, J = 8, 2 H_{arom.}); 6.78 – 6.85 (m, 3 H_{arom.}); 6.95 – 7.10 (m, 5 H_{arom.}); 7.12 – 7.14 (m, 3 H_{arom.}); 7.40 – 7.47 (m, 4 H_{arom.}); 7.50 – 7.67 (m, 3 H_{arom.}); 7.69 (d, J = 8, 2 H_{arom.}). 13 C-NMR (100 MHz, CDCl₃): 51.0 (COOMe); 59.5 (CH); 72.3; 105.6; 110.3; 125.3; 125.6 (2 C); 126.5 (2 C); 126.7; 127.0 (2 C); 127.5; 127.6 (2 C); 127.8 (2 C); 128.3; 128.4 (2 C); 129.9; 130.36; 130.41 (2 C); 130.6 (2 C); 130.9; 138.3; 140.0; 142.5; 143.5; 145.6; 165.5 (=C-O); 166.2 (CO). HR-ESI-MS: 543.1931 (C₃₇H₂₈NaO³₃, [M + Na]⁺; calc. 543.1936).

Methyl (3aSR,4RS,8bRS)-8b-(4-Bromophenyl)-4,8b-dihydro-2,3a,4-triphenyl-3aH-indeno[1,2-b]furan-3-carboxylate (4c), Methyl 2-[1-(4-Bromophenyl)-1,3-diphenyl-1H-inden-2-yl]-3-oxo-3-phenylpropanoate (6a), and Methyl 2-[3-(4-Bromophenyl)-1,1-diphenyl-1H-inden-2-yl]-3-oxo-3-phenylpropanoate (6b). Following the *General Procedure*, *Diels-Alder* adduct 3c (0.5 mmol) and MeSO₃H (3.0 mmol) were reacted in CH₂Cl₂. The column chromatography gave 4c (75 mg, 25%) and 6a/6b (91 mg, 30% overall yield).

MeSO₃H (6 equiv.) was added at r.t. to a soln. of adduct **4c** (1 equiv.) in CH_2Cl_2 (7 ml). After 2 d of the reaction (TLC-control), the 7 ml of Na_2CO_3 (aq.) was added carefully to the mixture. The aq. layer was extracted with CH_2Cl_2 (3 × 5 ml), the org. layers were combined, dried over MgSO₄, and evaporated to dryness. The residue was then purified by a CC using a mixture of hexane/AcOEt as eluent. The residue was subjected to SiO_2 CC (using hexane/AcOEt mixture as the eluent) to give the product **6a** in 34% yield.

Data of **4c**: White crystals. M.p. 177 – 179 °C. IR (CHCl₃): 1101, 1155, 1187, 1251, 1283, 1327, 1395, 1444, 1489, 1572, 1596, 1610, 1704, 3053. 1 H-NMR (400 MHz, CDCl₃): 3.75 (s, COOMe); 5.67 (s, CH); 6.19 (d, J = 8, 2 H_{arom.}); 6.65 – 7.70 (m, 21 H_{arom.}). 13 C-NMR (100 MHz, CDCl₃): 51.0 (COOMe); 59.4 (CH); 72.3; 105.0; 110.5; 125.6; 125.9 (2 C); 126.3; 126.7; 126.8; 127.66; 127.70 (2 C); 127.8 (2 C); 128.5; 129.4 (3 C); 130.1 (2 C); 130.2 (2 C); 130.3 (2 C); 130.5; 130.6 (2 C); 130.7; 138.0; 139.2; 142.3; 143.0; 145.6; 165.3 (=C-O); 206.0 (CO). HR-ESI-MS: 621.1036 (C_{37} H₂₇⁷⁹BrNaO $_{3}^{+}$, [M + Na] $_{7}^{+}$; calc. 623.1015).

Crystallographic Data for **4c**. $C_{37}H_{27}BrO_3$, M_r 599.50, triclinic, $P\bar{1}$ (no. 2), a=9.2308(3), b=12.6850(4), c=13.0536(5) Å, $\alpha=86.634(3)$, $\beta=81.895(3)$, $\gamma=71.113(3)^\circ$, V=1431.60(8) Å³, Z=2, $D_x=1.391$ g cm⁻³, F(000)=616, radiation, CuK_α ($\lambda=1.54184$ Å), $3.65 \le 2\theta \le 76.49$, intensity data were collected at 100(2) K with a $Bruker\ APEX-II\ CCD$ diffractometer, and employing $w/2\theta$ scanning technique, in the range of $-9 \le h \le 11$, $-15 \le k \le 15$, $-15 \le l \le 15$; the structure was solved by a direct method; all non-H-atoms were positioned, and anisotropic thermal parameters were refined from 5375 observed reflections with R(into)=0.0194 by a full-matrix least-squares technique converged to R=0.0307 and $R_w=0.0703$ $[I>2\sigma(I)]$. CCDC-1057421.

Data of **6a**: White solid. M.p. 232 - 233 °C. IR (CHCl₃): 1035, 1070, 1195, 1275, 1400, 1435, 1470, 1600, 1725, 3060. 1 H-NMR (400 MHz, CDCl₃): 3.40 (s, COOMe); 4.86 (s, CH); 6.34 - 7.75 (m, 23 H_{arom.}). 13 C-NMR (100 MHz, CDCl₃): 67.3; 72.7; 121.4 (2 C); 126.9 (2 C); 127.1; 127.3 (2 C); 127.6 (2 C); 127.7; 127.9; 128.7 (2 C); 129.5 (2 C); 130.7 (2 C); 130.8; 131.3; 131.6 (2 C); 131.9; 132.1; 132.5; 132.9; 141.3; 141.5; 142.5; 142.7; 142.9; 143.1; 143.6; 168.9 (CO); 206.6 (CO). HR-ESI-MS: 621.1032 ($C_{37}H_{27}^{79}$ BrNaO $_{3}^{+}$, $[M + Na]^{+}$; calc. 621.1041), 623.1017 ($C_{37}H_{27}^{81}$ BrNaO $_{3}^{+}$, $[M + Na]^{+}$; calc. 623.1015).

Data of **6b**: ¹H-NMR (400 MHz, CDCl₃): 3.40 (s, COOMe); 4.86 (s, CH); 6.34 – 7.75 (m, 23 H_{arom.}). ¹³C-NMR (100 MHz, CDCl₃): 52.2; 67.5; 73.1; 121.1 (4 C); 126.9 (2 C); 127.0; 127.1; 127.2; 127.25 (2 C); 127.34 (2 C); 127.6 (2 C); 127.7; 127.9 (2 C); 128.7 (4 C); 129.5 (2 C); 131.1; 131.2; 132.8; 133.0; 140.3; 140.8; 141.2; 143.4; 168.6 (CO); 206.5 (CO). HR-ESI-MS: 621.1036 (C₃₇H₂₇⁷⁹BrNaO₃⁺, [M + Na]⁺; calc. 621.1041). HR-ESI-MS: 623.1015 (C₃₇H₂₇⁸¹BrNaO₃⁺, [M + Na]⁺; calc. 623.1015).

Methyl 5,8-Diphenyl-7,8-dihydrobenzo[c]phenanthrene-6carboxylate (15). A quantity of 113 mg (98%) was obtained using General Procedure (reaction time 6 h) from Diels-Alder adduct 14 (120 mg). Yield 98%. White crystals. M.p. 156 – 158 °C. IR (CHCl₃): 1053, 1142, 1201, 1273, 1378, 1436, 1493, 1599, 1725, 3058. ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $3.12 - 3.19 (m, 1 \text{ H of CH}_2)$; 3.31 -3.40 (m, 1 H of CH₂); 3.53 (s, COOMe); 4.15 - 4.25 (m, CH); 6.98 (d, J = 6, 1 $H_{arom.}$); 7.25 – 7.60 (m, 15 $H_{arom.}$); 7.73 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.00 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$; 8.64 $(d, J = 9, 1 \text{ H}_{arom.})$ J = 9, 1 H_{arom.}). ¹³C-NMR (75 MHz, CDCl₃): 34.9 (CH₂); 45.01 (CH₂); 52.3 (COOMe); 126.1; 126.3; 126.5; 127.3 (2 C); 127.6; 127.8; 127.9; 128.1; 128.4; 128.6; 129.1 (3 C); 129.4 (2 C); 129.6; 130.5; 130.6; 130.8; 131.8; 132.0; 132.6; 133.9; 137.5; 138.5; 142.4; 142.6; 170.2 (CO). HR-ESI-MS: $463.1669 (C_{32}H_{24}NaO_2^+, [M + Na]^+; calc. 463.1674).$ Crystallographic Data for 15. C₃₂H₂₄O₂, M_r 440.51, triclinic, $P\bar{1}$ (no. 2), a = 5.7200(2), b = 10.3268(4), $c = 19.9208(8) \text{ Å}, \ \alpha = 92.798(3), \ \beta = 98.090(3), \ \gamma = 94.860$ (3)°, $V = 1158.60(8) \text{ Å}^3$, Z = 2, $D_x = 1.263 \text{ g cm}^{-3}$, F(000)= 464, radiation, MoK_{α} (λ = 0.71073 Å), $2.78 \le 2\theta \le 31.87$, intensity data were collected at 100(2) K with a Bruker APEX-II CCD diffractometer, and by employing a $w/2\theta$ scanning technique, in the range of $-7 \le h \le 8$, $-15 \le k \le 15$, $-27 \le l \le 28$; the structure was solved by a direct method; all non-H-atoms were positioned, and anisotropic thermal parameters were refined from 7174 observed reflections with R(into) = 0.0357 by a full-matrix least-squares technique converged to R = 0.0536 and $R_w = 0.1205 [I > 2\sigma(I)]$. CCDC-1057274.

REFERENCES

 S. H. Mehdi, R. Hashim, R. M. Ghalib, M. F. C. Guedes da Silva, O. Sulaiman, S. Z. Rahman, V. Murugaiyah, M. M. Marimuthu, J. Mol. Struct. 2011, 1006, 318.

- [2] C. A. Obafemi, P. O. Adelani, O. A. Fadare, D. A. Akinpelu, S. O. Famuyiwa, J. Mol. Struct. 2013, 1049, 429.
- [3] E. M. Mangnus, L. A. van Vliet, D. A. L. Vandenput, B. Zwanenburg, J. Agric. Food Chem. 1992, 40, 1222.
- [4] H. Malik, F. P. J. T. Rutjes, B. Zwanenburg, *Tetrahedron* 2010, 66, 7198.
- [5] H. Malik, W. Kohlen, M. Jamil, F. P. J. T. Rutjes, B. Zwanenburg, Org. Biomol. Chem. 2011, 9, 2286.
- [6] F.-D. Boyer, A. de Saint Germain, J.-P. Pillot, J.-B. Pouvreau, V. X. Chen, S. Ramos, A. Stévenin, P. Simier, P. Delavault, J.-M. Beau, C. Rameau, *Plant Physiol.* 2012, 159, 1524.
- [7] M. E. F. de Lima, A. J. A. Gabriel, R. N. Castro, J. Braz. Chem. Soc. 2000, 11, 371.
- [8] J. W. J. F. Thuring, G. H. L. Nefkens, R. Schaafstra, B. Zwanenburg, *Tetrahedron* 1995, 51, 5047.
- [9] M. Chakrabarty, A. Mukherji, S. Arima, Y. Harigaya, G. Pilet, Monatsh. Chem. 2009, 140, 189.
- [10] S. K. Kundu, A. Patra, A. Pramanik, *Indian J. Chem.*, Sect. B 2004, 43, 604.
- [11] N. M. Kablaoui, F. A. Hicks, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 4424.
- [12] J. Yoshida, M. Yamamoto, N. Kawabata, *Tetrahedron Lett.* 1985, 26, 6217.
- [13] B.-C. Hong, I.-C. Shen, J.-H. Liao, *Tetrahedron Lett.* **2001**, 42, 935.
- [14] N. N. Karade, S. G. Shirodkar, M. N. Patil, R. A. Potrekar, H. N. Karade, *Tetrahedron Lett.* 2003, 44, 6729.
- [15] S. Majumder, M. Sharma, P. J. Bhuyan, *Tetrahedron Lett.* 2013, 54 6868
- [16] X. Yang, J. Chem. Pharm. Res. 2014, 6, 733.
- [17] Hassner, D. J. Anderson, J. Org. Chem. 1974, 39, 2031.
- [18] M. J. Alves, N. G. Azoia, A. G. Fortes, *Heterocycles* 2005, 65, 1329.
- [19] M. J. Alves, N. G. Azoia, J. F. Bickley, A. G. Fortes, T. L. Gilchrist, R. Mendonça, J. Chem. Soc. Perkin Trans. 1 2001, 2969.
- [20] C. Einhorn, A. Durif, M.-T. Averbuch, J. Einhorn, Angew. Chem., Int. Ed. 2001, 40, 1926.
- [21] Y. Nishina, T. Kida, T. Ureshino, Org. Lett. 2011, 13, 3960.
- [22] Samarat, Y. Kuninobu, K. Takai, Synlett 2011, 2177.
- [23] Y. Kuninobu, Y. Nishina, K. Takai, *Tetrahedron* **2007**, *63*, 8463.
- [24] P. Yates, S. P. Douglas, Can. J. Chem. 1982, 60, 2760.
- [25] M. A. Battiste, C. T. Sprouse Jr., Tetrahedron Lett. 1970, 11, 4661.
- [26] M. P. Cava, K. Narasimhan, J. Org. Chem. 1971, 36, 1419.
- [27] K. B. Baucom, G. B. Butler, J. Org. Chem. 1972, 37, 1730.
- [28] V. Stepakov, V. M. Boitsov, A. G. Larina, A. P. Molchanov, Tetrahedron Lett. 2014, 55, 4895.
- [29] P. Binger, P. Wedemann, R. Goddard, U. H. Brinker, J. Org. Chem. 1996, 61, 6462.
- [30] E. Sheshenev, M. S. Baird, A. K. Croft, I. G. Bolesov, *Tetrahedron* 2009, 65, 10036.
- [31] K. F. S. Alnes, L. K. Sydnes, Monatsh. Chem. 2006, 137, 483.
- [32] P. Molchanov, T. Q. Tran, A. V. Stepakov, V. V. Gurzhii, R. R. Kostikov, Russ. J. Org. Chem. 2013, 49, 530.
- [33] W. A. Donaldson, R. P. Hughes, J. Am. Chem. Soc. 1982, 104, 4846.
- [34] M. I. Komendantov, I. A. D'jakonov, J. Gen. Chem. USSR 1963, 33, 2387.
- [35] M. I. Komendantov, I. A. D'jakonov, J. Gen. Chem. USSR 1959, 29, 1726.
- [36] J. Jacq, C. Einhorn, J. Einhorn, Org. Lett. 2008, 10, 3757.

Received May 9, 2015 Accepted April 25, 2016